qm_report/summary.py

107 lines
3.8 KiB
Python

import pandas as pd
import os
import glob
def init():
global df
# list_of_files = glob.glob('*.xlsx') # * means all if need specific format then *.csv
latest_file = max(glob.iglob('*.xlsx'), key=os.path.getctime)
if latest_file.startswith("~$"):
latest_file = latest_file.replace("~$", "")
print(latest_file)
df = pd.read_excel(latest_file, engine="openpyxl", sheet_name="daily")
if df.size > 0:
createHtmlSummary(df)
def createHtmlSummary(df):
# df = self.totalall
df = df.sort_values(by=['HUB'])
unique_hub = df["HUB"].unique()
SummaryString = '<html><body><style> table, th, td { border: 1px solid black; border-collapse: collapse; padding: 10px; text-align: center; }</style><br><p><b>Processed SLO count: ' + str(
len(df)) + '</b></p><table><tr><th></th>'
# Adding colum headers for ever hub
for hub in unique_hub:
SummaryString += "<th>"+hub+"</th>"
SummaryString += "<th>total</th>"
####################################
####### Between 99 and 100 ##########
####################################
SummaryString += '</tr><tr><td style="background-color:Green;">>= 99</td>'
tmp99 = df[(df.evaluatedPercentage >= 99) & (df.evaluatedPercentage <= 100)].groupby(
"HUB")["evaluatedPercentage"].count().reset_index()
for hub in unique_hub:
# for index, row in tmp99.iterrows():
SummaryString += '<td>{0}</td>'.format(tmp99[(
tmp99.HUB == hub)]["evaluatedPercentage"].values[0] if tmp99[(tmp99.HUB == hub)].size != 0 else 0)
SummaryString += '<td><b>{0}</b></td>'.format(
len(df[(df.evaluatedPercentage >= 99) & (df.evaluatedPercentage <= 100)]))
####################################
####### Between 98 and 99 ##########
####################################
SummaryString += '</tr><tr><td style="background-color:Orange;">>= 98</td>'
# if tmp98.size != 0:
tmp98 = df[(df.evaluatedPercentage >= 98) & (df.evaluatedPercentage < 99)].groupby(
"HUB")["evaluatedPercentage"].count().reset_index()
for hub in unique_hub:
SummaryString += '<td>{0}</td>'.format(tmp98[(
tmp98.HUB == hub)]["evaluatedPercentage"].values[0] if tmp98[(tmp98.HUB == hub)].size != 0 else 0)
SummaryString += '<td><b>{0}</b></td>'.format(
len(df[(df.evaluatedPercentage >= 98) & (df.evaluatedPercentage < 99)]))
####################################
####### Between 0 and 98 ###########
####################################
SummaryString += '</tr><tr><td style="background-color:Red;">< 98</td>'
tmp0 = df[(df.evaluatedPercentage >= 0) & (df.evaluatedPercentage < 98)].groupby(
"HUB")["evaluatedPercentage"].count().reset_index()
for hub in unique_hub:
SummaryString += '<td>{0}</td>'.format(
tmp0[(tmp0.HUB == hub)]["evaluatedPercentage"].values[0] if tmp0[(tmp0.HUB == hub)].size != 0 else 0)
SummaryString += '<td><b>{0}</b></td>'.format(
len(df[(df.evaluatedPercentage >= 0) & (df.evaluatedPercentage < 98)]))
####################################
####### -1 --> N/A ###########
####################################
SummaryString += '</tr><tr><td style="background-color:DodgerBlue;">-1</td>'
tmpNA = df[(df.evaluatedPercentage == -1)
].groupby("HUB")["evaluatedPercentage"].count().reset_index()
for hub in unique_hub:
SummaryString += '<td>{0}</td>'.format(tmpNA[(
tmpNA.HUB == hub)]["evaluatedPercentage"].values[0] if tmpNA[(tmpNA.HUB == hub)].size != 0 else 0)
SummaryString += '<td><b>{0}</b></td>'.format(
len(df[(df.evaluatedPercentage == -1)]))
SummaryString += "</tr></table></body></html>"
with open('summary.txt', 'w') as f:
f.write(SummaryString)
if __name__ == "__main__":
init()