import pandas as pd import os import glob def init(): global df # list_of_files = glob.glob('*.xlsx') # * means all if need specific format then *.csv latest_file = max(glob.iglob('*.xlsx'), key=os.path.getctime) if latest_file.startswith("~$"): latest_file = latest_file.replace("~$", "") print(latest_file) df = pd.read_excel(latest_file, engine="openpyxl", sheet_name="daily") if df.size > 0: createHtmlSummary(df) def createHtmlSummary(df): # df = self.totalall df = df.sort_values(by=['HUB']) unique_hub = df["HUB"].unique() SummaryString = '
Processed SLO count: ' + str( len(df)) + '
| ' # Adding colum headers for ever hub for hub in unique_hub: SummaryString += " | "+hub+" | " SummaryString += "total | " #################################### ####### Between 99 and 100 ########## #################################### SummaryString += '
|---|---|---|
| >= 99 | ' tmp99 = df[(df.evaluatedPercentage >= 99) & (df.evaluatedPercentage <= 100)].groupby( "HUB")["evaluatedPercentage"].count().reset_index() for hub in unique_hub: # for index, row in tmp99.iterrows(): SummaryString += '{0} | '.format(tmp99[( tmp99.HUB == hub)]["evaluatedPercentage"].values[0] if tmp99[(tmp99.HUB == hub)].size != 0 else 0) SummaryString += '{0} | '.format( len(df[(df.evaluatedPercentage >= 99) & (df.evaluatedPercentage <= 100)])) #################################### ####### Between 98 and 99 ########## #################################### SummaryString += '
| >= 98 | ' # if tmp98.size != 0: tmp98 = df[(df.evaluatedPercentage >= 98) & (df.evaluatedPercentage < 99)].groupby( "HUB")["evaluatedPercentage"].count().reset_index() for hub in unique_hub: SummaryString += '{0} | '.format(tmp98[( tmp98.HUB == hub)]["evaluatedPercentage"].values[0] if tmp98[(tmp98.HUB == hub)].size != 0 else 0) SummaryString += '{0} | '.format( len(df[(df.evaluatedPercentage >= 98) & (df.evaluatedPercentage < 99)])) #################################### ####### Between 0 and 98 ########### #################################### SummaryString += '
| < 98 | ' tmp0 = df[(df.evaluatedPercentage >= 0) & (df.evaluatedPercentage < 98)].groupby( "HUB")["evaluatedPercentage"].count().reset_index() for hub in unique_hub: SummaryString += '{0} | '.format( tmp0[(tmp0.HUB == hub)]["evaluatedPercentage"].values[0] if tmp0[(tmp0.HUB == hub)].size != 0 else 0) SummaryString += '{0} | '.format( len(df[(df.evaluatedPercentage >= 0) & (df.evaluatedPercentage < 98)])) #################################### ####### -1 --> N/A ########### #################################### SummaryString += '
| -1 | ' tmpNA = df[(df.evaluatedPercentage == -1) ].groupby("HUB")["evaluatedPercentage"].count().reset_index() for hub in unique_hub: SummaryString += '{0} | '.format(tmpNA[( tmpNA.HUB == hub)]["evaluatedPercentage"].values[0] if tmpNA[(tmpNA.HUB == hub)].size != 0 else 0) SummaryString += '{0} | '.format( len(df[(df.evaluatedPercentage == -1)])) SummaryString += "