import os import logging from decouple import config import yaml from dynatrace import Dynatrace import logging import pandas as pd import copy import time; def writeToExcel(env, t, result): list_available = [] list_legacy = [] list_obsolete = [] for type in ["available", "legacy", "obsolete"]: for i, (ki, vi) in enumerate(result[type].items()): if type == "available": list_available.append([vi["id"], vi["name"], vi["owner"]]) if type == "legacy": list_legacy.append([vi["id"], vi["name"], vi["owner"]]) if type == "obsolete": list_obsolete.append([vi["id"], vi["name"], vi["owner"]]) df_available = pd.DataFrame(list_available, columns=['id', 'name', 'owner']) df_legacy = pd.DataFrame(list_legacy, columns=['id', 'name', 'owner']) df_obsolete = pd.DataFrame(list_obsolete, columns=['id', 'name', 'owner']) filename = os.path.join(".\log", str(t) + "_" + str(env) + '_dashboards.xlsx') os.makedirs(os.path.dirname(filename), exist_ok=True) with pd.ExcelWriter(filename) as writer: df_available.to_excel(writer, sheet_name='available') df_legacy.to_excel(writer, sheet_name='legacy') df_obsolete.to_excel(writer, sheet_name='obsolete') def evaluate(env, data): legacy = {} available = {} obsolete = {} dict_dashboards = data[0] list_dashboard_ids = data[1] dict_metric_queries = data[2] list_metric_query_ids = data[3] dict_metric_queries_copy = copy.deepcopy(dict_metric_queries) list_metric_query_copy_ids = copy.deepcopy(list_metric_query_ids) for x, (m, metric_query) in enumerate(dict_metric_queries.items()): if metric_query["id"] not in list_dashboard_ids: legacy[x] = {"id" : metric_query["id"], "name" : metric_query["name"], "owner" : metric_query["owner"]} del dict_metric_queries_copy[m] list_metric_query_copy_ids.remove(metric_query["id"]) logging.debug("%s %s have been deleted in the past", str(env), len(legacy)) logging.debug("%s %s dashboards with viewCount and active", str(env), len(dict_metric_queries_copy)) for i, (d, dashboard) in enumerate(dict_dashboards.items()): if dashboard["id"] in list_metric_query_copy_ids: available[i] = dashboard if dashboard["id"] not in list_metric_query_copy_ids: obsolete[i] = dashboard logging.info("%s %s dashboards with viewCount!", str(env), len(available)) logging.info("%s %s dashboards with 0 viewCount!", str(env), len(obsolete)) return {"available" : available, "legacy" : legacy, "obsolete" : obsolete} def adaptDataStructure(dashboards, metric_queries): dict_dashboards= {} list_dashboard_ids = [] dict_metric_queries = {} list_metric_query_ids = [] for s, stub in enumerate(getattr(dashboards, "_PaginatedList__elements")): dict_dashboards[s] = {"id" : getattr(stub, "id"), "name" : getattr(stub, "name"), "owner" : getattr(stub, "owner")} list_dashboard_ids.append(getattr(stub, "id")) for collection in getattr(metric_queries, "_PaginatedList__elements"): for m, q in enumerate(getattr(collection, "data")): dict_metric_queries[m] = {"id" : getattr(q, "dimension_map")["id"], "name" : None, "owner" : None} list_metric_query_ids.append(getattr(q, "dimension_map")["id"]) return [dict_dashboards, list_dashboard_ids, dict_metric_queries, list_metric_query_ids] def getDashboardsWithViewCount(env, client, METRIC_SELECTOR, RESOLUTION, FROM_DATE, TO_DATE): logging.debug("%s get dashboards with viewCount, resolution %s ...", str(env), RESOLUTION) metric_query = client.metrics.query(METRIC_SELECTOR, RESOLUTION, FROM_DATE, TO_DATE) n_metric_query = getattr(metric_query, "_PaginatedList__total_count") logging.debug("%s %s dashboards with viewCount and older than 6 Months", str(env), str(n_metric_query)) return metric_query def getDashboards(env, client): logging.debug("%s get all dashboards...", str(env)) dashboards = client.dashboards.list(owner=None, tags=None) n_dashboards = getattr(dashboards, "_PaginatedList__total_count") logging.info("%s %s total dashboards", str(env), str(n_dashboards)) return dashboards def initDtClient(env, DT_URL, DT_TOKEN): logging.debug("%s init Dynatrace client...", str(env)) DT_CLIENT = Dynatrace(DT_URL, DT_TOKEN, logging.Logger("ERROR"), None, None, 0, 10*1000) return DT_CLIENT if __name__ == "__main__": t = time.strftime("%Y%m%d-%H%M%S") logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s') with open(os.path.basename("./environment.yaml")) as env_cfg: environment = yaml.safe_load(env_cfg) for env, doc in environment.items(): logging.debug("%s checking token...", str(env)) if config(dict(doc[2]).get("env-token-name"), default='') != "": DT_URL = dict(doc[1]).get("env-url") DT_TOKEN = config(dict(doc[2]).get("env-token-name"), default='') METRIC_SELECTOR = dict(doc[5]).get("metricSelector") RESOLUTION = dict(doc[6]).get("resolution") FROM_DATE= dict(doc[7]).get("fromDate") TO_DATE= dict(doc[8]).get("toDate") client = initDtClient(env, DT_URL, DT_TOKEN) dashboards = getDashboards(env, client) metric_queries = getDashboardsWithViewCount(env, client, METRIC_SELECTOR, RESOLUTION, FROM_DATE, TO_DATE) data = adaptDataStructure(dashboards, metric_queries) result = evaluate(env, data) writeToExcel(env, t, result) print("finished")